Aims: The pathogenesis of hepatic encephalopathy (HE) is multifactorial. Even though ammonia is the central component in the pathogenesis of HE, oxidative stress is believed to play a role in exacerbating the neuropsychological effects of ammonia in patients with liver disease. With new, highly sensitive imaging techniques, brain edema is observed in HE patients. We previously demonstrated that portacaval shunted hyperammonemic rats do not develop oxidative stress or brain edema. In order to define a synergistic effect between hyperammonemia and systemic oxidative stress, the present study investigates the role of oxidative stress in the pathogenesis of brain edema in PCA rats following glutathione depletion by diethyl maleate (DEM). Methods: In the first set of experiments, we evaluated the effect of DEM in PCA and SHAM-operated control rats by injecting DEM at a dose of 0.4 and 1 mg/kg/day intraperitoneally for 10 days starting at day 18 after surgery. Rats were sacrificed at day 28 and oxidative stress was evaluated by arterial malon-dialdehyde (MDA, commercial kit). In the second set of experiments, 1 mg/kg/day DEM was used to induce oxidative stress. Ammonia (commercial kit) as well as other different oxidative stress markers: reactive oxygen species (DCFDA fluorescence technique), and 4-hydroxy-2-nonenal (HNE, Western blot) were assessed in arterial plasma and frontal cortex tissue. Brain water content was measured in the frontal cortex using a specific gravimetric technique. Results: DEM at 1 mg/kg/day (not 0.4 mg/kg/day) induced a significant increase in MDA levels in PCA rats. No increase in MDA was detected following either dose of DEM in SHAM-operated controls. Ammonia levels in both DEM-treated and non-treated PCA rats were significantly increased vs respective sham-operated controls (p<0.001) and remained unchanged between non-treated and DEM-treated PCA groups (p>0.05). An increase in brain water content was observed in DEM-treated PCA rats vs non-treated PCA rats (PCA+DEM: 78.45 ± 0.13% vs PCA: 77.38 ± 0.11, p< 0.001). Although no significant changes in reactive oxygen species were observed, there was an increase in plasma levels of HNE in DEM-treated PCA rats compared to non-treated PCA rats. No significant changes in any oxidative stress markers were observed in the frontal cortex. Conclusions: DEM treatment in PCA rats induced systemic oxidative stress but not central oxidative stress. This, imposed on hyperammonemia, was accompanied by the onset of brain edema in rats with PCA. Oxidative stress and brain edema were not detected in SHAM-operated rats, which were not hyperammonemic. Our findings suggest a synergistic effect between hyperammonemia and systemic oxidative stress is implicated in the pathogenesis of brain edema in hepatic encephalopathy.