Introduction: Hepatic encephalopathy (HE) is a neuropsychiatric syndrome, a major complication of chronic liver disease (CLD/cirrhosis). The primary cause of hospital admissions for cirrhotic patients is an overt episode of HE. Precipitating factors of HE are frequently due to increased blood ammonia. Patients with history of multiple episodes of HE experienced persisting neurological complications post-liver transplantation. Nevertheless, the impact of HE episodes on neurological integrity is unknown. We hypothesize that multiple episodes of HE will accelerate and/or intensify neurological deterioration. To date, an animal model of episodic HE is lacking. Therefore, our goal was to characterize an animal model of episodic HE (precipitated with ammonia) and to evaluate the impact of cumulative episodes on neurological status in cirrhotic rats. M&M: Animal model of CLD and HE: 6-week bile-duct ligation (BDL) rats, and Sham-operated controls were used. Ammonium acetate was used to induce HE episodes, every 4 days starting at 3-weeks post-surgery (total 5 episodes). After the last episode, we assessed motor-coordination (RotaRod), anxiety (elevated plus maze), as well as, short-term and long-term memory (novel object recognition). Rats were then sacrificed, and plasma ammonia measured. Results: Short-term memory (p<0.05) and motor-coordination (p<0.05) were reduced in both non-episodic and episodic BDL groups when compared Sham-operated controls. Long-term memory impairment (p=0.06) and increased anxiety (+60.0%, p<0.05) were found only in episodic vs non-episodic BDL rats. Moreover, there was an increase in blood ammonia (+30.4%, p=0.06) in episodic BDL vs non-episodic BDL rats. Conclusion: The induction of HE episodes escalates neurological impairments in cirrhotic rats. Thus, this new episodic HE model represents a good approach to explore the pathological mechanism arising from multiple episodes, as well as further investigate brain sensitivity to ammonia. Moreover, this model is an excellent platform to investigate novel therapies to prevent or treat episodic HE.