Line Ste-Marie, Luc Vachon, Chantal Bémeur, Jean Lambert, Jane Montgomery.
In vivo bilateral microdialysis in the rat striatum was used to investigate hydroxyl radical formation under basal conditions and after intrastriatal administration of the neurotoxin, 1-methyl-4-phenylpyridinium (MPP+). After a short equilibration period, 4-hydroxybenzoate (4HBZ), which scavenges hydroxyl radicals to produce 3,4-dihydroxybenzoate (34DHB), was injected intraperitoneally 15 min before infusion of MPP+. To evaluate the enzymatic contribution to hydroxyl radical formation, two other series of microdialyses were performed following administration of monoamine oxidase B inhibitors, either 1-deprenyl (selegiline) or MDL 72,974A [(E)-2-(4-fluorophenethyl)-3-fluoroallylamine hydrochloride]. Microdialysate samples were analyzed by high-performance liquid chromatography for catecholamines, 3,4-dihydroxyphenylacetate (DOPAC), homovanillate (HVA), along with the hydroxyl radical adduct, 34DHB and its precursor, 4HBZ. MPP+ administration resulted in a massive release of dopamine along with a decrease in DOPAC and HVA in all three groups. A striking effect in all three groups was noted in which MPP+ resulted in a decrease in interstitial 4HBZ to < 50% of the non-MPP+ -treated side. In absolute terms, the amount of 34DHB produced was low but similar in all three groups, even after unilateral MPP+ infusion. When 34DHB was normalized to 4HBZ release to account for differences in precursor availability, there were no significant differences in the 34DHB/4HBZ ratios either with or without MAO inhibitor treatment or after local MPP+ infusion. Systemic 4HBZ administration appears to result predominantly in intra-cellular sampling of hydroxyl radicals which produces different results from local infusion of trapping agents such as salicylate.