Background: Liver failure/disease leads to hyperammonemia which is central in the pathogenesis of hepatic encephalopathy. However, it is believed systemic oxidative/nitrosative stress may play an important role in exacerbating the neuropsychological effects of hyperammonemia observed in patients with liver disease. The present study aims to investigate the role of oxidative/nitrosative stress in 2 rat models of liver disease/hepatic encephalopathy; 1) portacaval anastomosis (PCA), and 2) bile-duct ligation (BDL). Methods: Rats were sacrificed 4 weeks following PCA or 6 weeks following BDL. Ammonia, reactive oxygen species (ROS), H2O2 and nitric oxide (NO) were measured in plasma (arterial) and ammonia, ROS and NO were measured in cerebrospinal fluid (CSF) using respectively a commercially available kit, a fluorescent technique and the Griess reaction. Brain water was measured in the frontal cortex using a specific gravimetric technique. Results: Hyperammonemia developed in both PCA (PCA: 173.7 ± 13.6 uM vs sham: 77.8 ± 11.2 uM; p<0.001) and BDL (BDL: 114.1 ± 19.2 uM vs sham: 33.2 ± 4.7 uM; p<0.05) rats with PCA rats being significantly higher compared to BDL rats (p<0.05). Consequently, ammonia increased in CSF in both PCA (PCA: 146.6 ± 26.0 uM vs sham: 31.5 ± 6.9 uM; p<0.001) and BDL (BDL: 128.4 ± 36.7 uM vs sham: 23.3 ± 6.1 uM; p<0.05). No significant change was observed between PCA and BDL. Only rats with BDL demonstrated an increase in plasma levels of ROS (5.8-fold increase vs sham; p<0.001) and H2O2 (3.2-fold increase vs sham; p<0.05). No significant change in CSF ROS was found in BDL or PCA compared to their respective control groups. In addition, an increase in brain water content was only observed in rats with BDL (BDL: 81.52 ± 0.15% vs sham: 80.43 ± 0.21%, p<0.05). No significant change in plasma ROS, H2O2 or brain water was found in PCA rats vs sham-operated controls. Conclusion: Oxidative stress in addition to hyperammonemia results in an increase in brain water in rats with BDL which is not in PCA rats where only hyperammonemia is observed. Our findings suggest systemic oxidative stress is implicated in the pathogenesis of brain edema and its synergistic effect with ammonia may lead to progression of hepatic encephalopathy.