Background: Chronic liver disease leads to hyperammonemia, a central component in the pathogenesis of hepatic encephalopathy (HE). Neurotoxic effects of ammonia are known to induce numerous metabolic alterations such as increased brain glutamine and lactate. However, their roles in the development of brain edema are not defined. Aims: Having previously demonstrated an increase in both glutamine and lactate in six-week bile-duct ligated rats (BDL) in association with HE, our aim in the present study was to define the role of lactate in the pathogenesis of brain edema by inhibiting brain lactate production. Methods: BDL rats were treated with dichloroacetate (DCA, 25 mg/kg intraperitoneally, for 7 days starting at week 5 after bile-duct ligation). DCA, a pyruvate dehydrogenase kinase inhibitor leads to pyruvate dehydrogenase stimulation, therefore favoring the oxidation of pyruvate and consequently leading to a decrease in lactate production. Rats were sacrificed at week 6 after bile-duct ligation. In all experimental groups, brain edema was assessed using the specific gravimetric technique, lactate was measured following its oxidation by lactate oxidase to pyruvate and hydrogen peroxide which reacts with AmplexRed (10-acetyl-3,7-dihidroxyphenoxazine) generating measurable resorufin (fluorescent product) and glutamine was quantified using high performance liquid chromatography. Results: Six weeks following BDL, rats develop brain edema, as well as increased brain lactate and glutamine compared to SHAM-operated controls. DCA treatment normalized brain lactate in BDL rats (76.17±3.31 µM/100 µg protein vs BDL: 254.60±10.12 µM/100 µg protein, p<0.001; non-significant vs SHAM: 111.70±7.08 µM/100 µg protein). DCA-treated BDL rats demonstrated a significant reduction of brain water content reaching values similar to those seen in SHAM-operated rats (77.49±0.07% vs BDL: 78.46±0.28%; p<0.05; non-significant vs SHAM: 77.35±0.17%). Glutamine levels were increased in BDL vs sham operated rats and remained high in DCA-treated BDL rats (569.20±80.44 µM vs BDL: 796.60±71.50 µM; p<0.001; both increased vs SHAM: 442.80±33.79 µM; p<0.01). Conclusions: Inhibition of lactate synthesis led to an attenuation in brain edema and brain lactate levels while brain glutamine levels remained elevated. Our findings suggest increased brain lactate, not glutamine, is an important factor in the pathogenesis of brain edema. DCA has previously demonstrated a long-term safety profile in patients with congenital lactic acidosis and beneficial effects with no adverse reactions in other diseases such as cancer and chronic obstructive pulmonary disease. Therefore, inhibition of lactate synthesis can rapidly provide a promising therapeutic approach for the management of patients with end-stage liver disease.