Les effets du stress oxydatif dans l'encéphalopathie hépatique.
M.Sc., Sciences biomédicales, Université de Montréal
Direction:
- Dr Christopher Rose
2008 - 2010
Publications connexes
Cristina R. Bosoi, Xiaoling Yang, Jimmy Huynh, Christian Parent-Robitaille, Wenlei Jiang, Mélanie Tremblay, Christopher F. Rose.
Chronic liver failure leads to hyperammonemia, a central component in the pathogenesis of hepatic encephalopathy (HE); however, a correlation between blood ammonia levels and HE severity remains controversial. It is believed oxidative stress plays a role in modulating the effects of hyperammonemia. This study aimed to determine the relationship between chronic hyperammonemia, oxidative stress, and brain edema (BE) in two rat models of HE: portacaval anastomosis (PCA) and bile-duct ligation (BDL). Ammonia and reactive oxygen species (ROS) levels, BE, oxidant and antioxidant enzyme activities, as well as lipid peroxidation were assessed both systemically and centrally in these two different animal models. Then, the effects of allopurinol (xanthine oxidase inhibitor, 100mg/kg for 10days) on ROS and BE and the temporal resolution of ammonia, ROS, and BE were evaluated only in BDL rats. Similar arterial and cerebrospinal fluid ammonia levels were found in PCA and BDL rats, both significantly higher compared to their respective sham-operated controls (p<0.05). BE was detected in BDL rats (p<0.05) but not in PCA rats. Evidence of oxidative stress was found systemically but not centrally in BDL rats: increased levels of ROS, increased activity of xanthine oxidase (oxidant enzyme), enhanced oxidative modifications on lipids, as well as decreased antioxidant defense. In PCA rats, a preserved oxidant/antioxidant balance was demonstrated. Treatment with allopurinol in BDL rats attenuated both ROS and BE, suggesting systemic oxidative stress is implicated in the pathogenesis of BE. Analysis of ROS and ammonia temporal resolution in the plasma of BDL rats suggests systemic oxidative stress might be an important "first hit", which, followed by increases in ammonia, leads to BE in chronic liver failure. In conclusion, chronic hyperammonemia and oxidative stress in combination lead to the onset of BE in rats with chronic liver failure.
Portacaval anastomosis-induced hyperammonemia does not lead to oxidative stress.
Xiaoling Yang, Cristina R. Bosoi, Wenlei Jiang, Mélanie Tremblay, Christopher F. Rose.
Ammonia is neurotoxic and believed to play a major role in the pathogenesis of hepatic encephalopathy (HE). It has been demonstrated, in vitro and in vivo, that acute and high ammonia treatment induces oxidative stress. Reactive oxygen species (ROS) are highly reactive and can lead to oxidization of proteins resulting in protein damage. The present study was aimed to assess oxidative status of proteins in plasma and brain (frontal cortex) of rats with 4-week portacaval anastomosis (PCA). Markers of oxidative stress, 4-hydroxy-2-nonenal (HNE) and carbonylation were evaluated by immunoblotting in plasma and frontal cortex. Western blot analysis did not demonstrate a significant difference in either HNE-linked or carbonyl derivatives on proteins between PCA and sham-operated control rats in both plasma and frontal cortex. The present study suggests PCA-induced hyperammonemia does not lead to systemic or central oxidative stress.
Xiaoling Yang, Cristina R. Bosoi, Mélanie Tremblay, Christopher F. Rose.
Introduction: L'ammoniaque joue un rôle majeur dans la pathogénèse de l'encéphalopathie hépatique. Le stress oxydatif est toutefois également proposé d'être impliqué. Des études récentes sont à l'origine de notre projet : 1) la concentration neurotoxique d'ammoniaque induisant le stress oxydatif a été démontrée in vitro et 2) le stress oxydant systémique exacerbe les effets neuropsychologiques de l'hyperammonémie observée chez les patients atteints d’une maladie hépatique. Notre étude vise à mesurer le stress oxydant systémique et central en association avec l'œdème cérébral chez les rats atteints de cirrhose. Méthodes: Les rats ont été sacrifiés six semaines après la ligature de la voie biliaire (bile-duct ligation, BDL), induisant une cirrhose. Le plasma artériel et le liquide céphalo-rachidien (LCR) ont été prélevés afin de mesurer l'ammoniaque (kit commercial), les espèces réactives de l'oxygène (ROS, technique de fluorescence DCFDA), l'oxyde nitrique (NO, méthode de Griess) et la peroxydation lipidique (malondialdéhyde, MDA, kit commercial). Le cortex frontal a été disséqué pour mesurer l'activité de la catalase (antioxydant, technique de fluorescence avec l'Amplex Red) et les dérivés de S-nitrosylation du résidu cystéine (immunobuvardage). Le volume en eau du cerveau a été déterminé en utilisant la technique gravimétrique spécifique. Résultats: Le volume en eau du cerveau a augmenté dans les rats avec BDL vs sham-contrôles (81.91 ± 0.19% vs 81.23 ± 0.20%, p <0.05). Les rats avec BDL ont développé, vs les sham-contrôles, une augmentation plasmatique de concentration d'ammoniaque (91.8 µM ± 18.4 vs 41.2 µM ± 13.2, p<0.05), de NO (2.9 fois plus élevé), de ROS (4.9 fois plus élevé), de MDA (41.9 µM ± 7.4 vs 9.9 µM ± 0.6, p<0.005) et de dérivés de S-nitrosylation du résidu cystéine, ainsi qu'une diminution de l'activité de la catalase (1.3 U/ml ± 0.5 vs 3.2 U/ml ± 1.4, p<0.05). Dans le système nerveux central, les rats avec BDL (vs sham-contrôles) ont développé une augmentation de l'ammoniaque dans le LCR (123.5 µM ± 21.7 vs 23.3 µM ± 6.1, p<0.05) mais n'ont pas développé une augmentation de ROS et de NO dans le LCR ou une augmentation de MDA et de dérivés de S-nitrosylation du résidu cystéine dans le cerveau. En outre, l'activité de la catalase dans le cerveau est restée inchangée dans les rats avec BDL. Conclusions: Six semaines après la ligature de la voie biliaire, les rats ont développé un œdème cérébral. L'augmentation de l'ammoniaque artérielle a été accompagnée d'une élévation du NO, des ROS, de la peroxydation lipidique et de la S-nitrosylation, ainsi qu'une diminution de l'activité de la catalase. Toutefois, une hausse du niveau d'ammoniaque dans le LCR conduit à des résultatss inverses dans le cerveau, où aucune augmentation des marqueurs du stress oxydatif n'a été trouvée. Nos résultatss suggèrent que 1) l'ammoniaque n'induit pas le stress oxydatif dans le cerveau, 2) le stress oxydatif systémique est liée à une diminution de l'activité de la catalase et 3) l'œdème cérébral chez les rats avec BDL est associé à un stress oxydatif systémique, et non central.
Xiaoling Yang, Cristina Bosoi, Mélanie Tremblay, Christopher F. Rose.
Background: Ammonia plays a major role in the pathogenesis of hepatic encephalopathy however oxidative stress is also believed to be involved. Two lines of evidence lead us to the following aim of our study: 1) neurotoxic levels of ammonia have demonstrated to induce oxidative stress in vitro and 2) systemic oxidative stress is believed to exacerbate the neuropsychological effects of hyperammonemia observed in patients with liver disease. Our aim was to measure oxidative stress markers systemically and centrally, in association with brain edema in rats with cirrhosis. Methods: Rats were sacrificed 6 weeks following bile-ligated induced cirrhosis. Arterial plasma and cerebrospinal fluid (CSF) were collected to measure ammonia (commercially available kit), reactive oxygen species (ROS) (DCFDA-fluorescent technique), nitric oxide (NO) (Griess method) and lipid peroxidation (malondialdehyde, MDA) (commercially available kit). Frontal cortex was dissected to measure antioxidant catalase activity (Amplex Red fluorescent technique), S-nitrosylation of cystein thiols (immunoblotting) and brain water content was determined using the specific gravimetric technique. Results: Brain water content increased in BDL rats vs SHAM-operated controls (81.91 ± 0.19% vs 81.23 ± 0.20%, p<0.05). BDL rats vs SHAM-operated controls developed an increase in plasma arterial levels of ammonia (91.8 ± 18.4uM vs 41.2 ± 13.2uM, p<0.05), ROS (4.9 fold increase), NO (2.9 fold increase), MDA (41.9 ± 7.4uM vs 9.9 ± 0.6uM, p<0.005), S-nitrosylated proteins and a decrease in catalase activity (1.3 ± 0.5U/ml vs 3.2 ± 1.4U/ml, p<0.05). Centrally, BDL rats vs SHAM-operated controls developed an increase in CSF ammonia (123.5 ± 21.7uM vs 23.3 ± 6.1uM, p<0.05) but did not develop an increase in CSF ROS and NO or in brain MDA and S-nitrosylation detection. Furthermore, catalase activity in the brain was unchanged in BDL vs SHAM-operated controls. Conclusions: Six weeks following BDL, rats developed brain edema. An increase in arterial ammonia was accompanied with an increase in lipid peroxidation, NO, ROS and S-nitrosylation with a decrease in catalase activity. However, a similar increase in ammonia levels in CSF lead to contrary results where no increase in oxidative stress markers was found in brain. Our findings suggest 1) ammonia does not induce oxidative stress in the brain, 2) systemic oxidative stress is related to a decrease in catalase activity and 3) brain edema in BDL rats is associated with systemic, and not central, oxidative stress.
Xiaoling Yang, Cristina Bosoi, Mélanie Tremblay, Christopher F. Rose.
Background: Ammonia plays a major role in the pathogenesis of hepatic encephalopathy however oxidative stress is also believed to be involved. Two lines of evidence lead us to the following aim of our study: 1) neurotoxic levels of ammonia have demonstrated to induce oxidative stress in vitro and 2) systemic oxidative stress is believed to exacerbate the neuropsychological effects of hyperammonemia observed in patients with liver disease. Our aim was to measure oxidative stress markers systemically and centrally, in association with brain edema in rats with cirrhosis. Methods: Rats were sacrificed 6 weeks following bile-ligated induced cirrhosis. Arterial plasma and cerebrospinal fluid (CSF) were collected to measure ammonia (commercially available kit), reactive oxygen species (ROS) (DCFDA-fluorescent technique), nitric oxide (NO) (Griess method) and lipid peroxidation (malondialdehyde, MDA) (commercially available kit). Frontal cortex was dissected to measure antioxidant catalase activity (Amplex Red fluorescent technique), S-nitrosylation of cystein thiols (immunoblotting) and brain water content was determined using the specific gravimetric technique. Results: Brain water content increased in BDL rats vs SHAM-operated controls (81.91 ± 0.19% vs 81.23 ± 0.20%, p<0.05). BDL rats vs SHAM-operated controls developed an increase in plasma arterial levels of ammonia (91.8 ± 18.4uM vs 41.2 ± 13.2uM, p<0.05), ROS (4.9 fold increase), NO (2.9 fold increase), MDA (41.9 ± 7.4uM vs 9.9 ± 0.6uM, p<0.005), S-nitrosylated proteins and a decrease in catalase activity (1.3 ± 0.5U/ml vs 3.2 ± 1.4U/ml, p<0.05). Centrally, BDL rats vs SHAM-operated controls developed an increase in CSF ammonia (123.5 ± 21.7uM vs 23.3 ± 6.1uM, p<0.05) but did not develop an increase in CSF ROS and NO or in brain MDA and S-nitrosylation detection. Furthermore, catalase activity in the brain was unchanged in BDL vs SHAM-operated controls. Conclusions: Six weeks following BDL, rats developed brain edema. An increase in arterial ammonia was accompanied with an increase in lipid peroxidation, NO, ROS and S-nitrosylation with a decrease in catalase activity. However, a similar increase in ammonia levels in CSF lead to contrary results where no increase in oxidative stress markers was found in brain. Our findings suggest 1) ammonia does not induce oxidative stress in the brain, 2) systemic oxidative stress is related to a decrease in catalase activity and 3) brain edema in BDL rats is associated with systemic, and not central, oxidative stress.
Cristina R. Bosoi, Xiaoling Yang, Wenlei Jiang, Christian Parent-Robitaille, Mélanie Tremblay, Christopher F. Rose.
Background: Liver failure/disease leads to hyperammonemia, a central component in the pathogenesis of hepatic encephalopathy. However, it is believed systemic oxidative/nitrosative stress may exacerbate the neuropsychological effects of hyperammonemia observed in patients with liver disease. The present study aims to investigate the role of oxidative/nitrosative stress in 2 rat models of liver disease/hepatic encephalopathy; 1) portacaval anastomosis (PCA), and 2) bile-duct ligation (BDL). Methods: Rats were sacrificed 4 weeks following PCA and 6 weeks following BDL. Arterial plasma and cerebrospinal fluid (CSF) were collected to measure ammonia, reactive oxygen species (ROS), hydrogen peroxide (H2O2) and nitric oxide (NO). S-nitrosylation of cystein thiols was measured in the frontal cortex and plasma proteins by immunoblotting. Brain water content was measured in the frontal cortex using a specific gravimetric technique. Results: Hyperammonemia developed in both PCA (PCA: 181.0 ± 8.5uM vs sham: 60.5 ± 7.0uM; p< 0.0001) and BDL (BDL: 101.1 ± 11.0uM vs sham: 41.7 ± 9.2uM; p< 0.05) rats with PCA rats being significantly higher compared to BDL rats (p< 0.001). Consequently, ammonia increased in CSF in both PCA (PCA: 159.5 ± 15.8uM vs sham: 32.5 ± 3.7uM; p< 0.0001) and BDL (BDL: 123.5 ± 21.7uM vs sham: 23.3 ± 6.1uM; p< 0.05), but no significant change was observed between PCA and BDL. Only rats with BDL demonstrated an increase in plasma levels of ROS (5.8-fold increase vs sham; p< 0.001), H2O2 (3.2-fold increase vs sham; p< 0.05) and NO (2.9-fold increase vs sham; p< 0.05). This was accompanied by an increase in S-nitrosylation of plasma proteins. An increase in brain water content was observed in rats with BDL (BDL: 81.91 ± 0.19% vs sham: 81.23 ± 0.20, p< 0.05) whereas no significant change in brain water content was found in PCA vs sham-operated control rats. Conclusion: Hyperammonemia together with systemic oxidative stress are associated with brain edema in rats with BDL which is not demonstrated in PCA rats where only hyperammonemia is observed. Our findings suggest systemic oxidative stress is implicated in the pathogenesis of brain edema and its synergistic effect with ammonia may lead to progression of hepatic encephalopathy.
Cristina R. Bosoi, Xiaoling Yang, Wenlei Jiang, Christian Parent-Robitaille, Mélanie Tremblay, Christopher F. Rose.
Background: Liver failure/disease leads to hyperammonemia which is central in the pathogenesis of hepatic encephalopathy. However, it is believed systemic oxidative/nitrosative stress may play an important role in exacerbating the neuropsychological effects of hyperammonemia observed in patients with liver disease. The present study aims to investigate the role of oxidative/nitrosative stress in 2 rat models of liver disease/hepatic encephalopathy; 1) portacaval anastomosis (PCA), and 2) bile-duct ligation (BDL). Methods: Rats were sacrificed 4 weeks following PCA and 6 weeks following BDL. Arterial plasma and cerebrospinal fluid (CSF) were collected to measure ammonia, reactive oxygen species (ROS), hydrogen peroxide (H2O2) (only measured in plasma) and nitric oxide (NO) using a commercially available kit, the DCFDA and Amplex Red fluorescent techniques and the Griess reaction respectively. S-nitrosylation of cystein thiols was measured in the frontal cortex and plasma proteins by immunoblotting. Brain water content was measured in the frontal cortex using a specific gravimetric technique. Results: Hyperammonemia developed in both PCA (PCA: 181.0 ± 8.5uM vs sham: 60.5 ± 7.0uM; p<0.0001) and BDL (BDL: 101.1 ± 11.0uM vs sham: 41.7 ± 9.2uM; p<0.05) rats with PCA rats being significantly higher compared to BDL rats (p<0.001). Consequently, ammonia increased in CSF in both PCA (PCA: 159.5 ± 15.8uM vs sham: 32.5 ± 3.7uM; p<0.0001) and BDL (BDL: 123.5 ± 21.7uM vs sham: 23.3 ± 6.1uM; p<0.05), but no significant change was observed between PCA and BDL. Only rats with BDL demonstrated an increase in plasma levels of ROS (5.8-fold increase vs sham; p<0.001), H2O2 (3.2-fold increase vs sham; p<0.05) and NO (2.9-fold increase vs sham; p<0.05). This was accompanied by an increase in S-nitrosylation of plasma proteins. No significant changes in CSF ROS and NO, nor in S-nitrosylation of frontal cortex proteins were found in BDL or PCA compared to their respective control groups. In addition, an increase in brain water content was observed in rats with BDL (BDL: 81.91 ± 0.19% vs sham: 81.23 ± 0.20, p<0.05). No significant change in brain water content was found in PCA rats vs sham-operated controls. Conclusion: Systemic oxidative stress together with hyperammonemia results in an increase in brain water in rats with BDL which is not demonstrated in PCA rats where only hyperammonemia is observed. Our findings suggest systemic oxidative stress is implicated in the pathogenesis of brain edema and its synergistic effect with ammonia may lead to progression of hepatic encephalopathy.
Nouvelles connexes
Article dans FRBM-Bosoi-2012
13 years agoA new graduated student : Xiaoling!
14 years agoArticle dans Metabolic Brain Disease-Yang-2010
15 years agoRésumés acceptés à l'AASLD 2009
15 years agoRésumés acceptés au ISHE 2009
15 years ago